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Introduction: Planetary exploration missions
have returned a wealth of imagery data over the last 40
years. The problem is how to make best use of it all.
Thoroughly analyzing such large datasets manually is
impractical, but developing handwritten feature ex-
traction software is difficult and expensive. The cur-
rent project explores the use of machine learning tech-
niques to automate the development of feature extrac-
tion algorithms for the Mars Orbiter Camera (MOC)
narrow angle dataset using Los Alamos National Labo-
ratory’s GENIE machine learning software. GENIE
uses a genetic algorithm to assemble feature extraction
algorithms from low-level spatial and spectral image
processing steps. Each algorithm is evaluated against
user-provided training data, and the most accurate ones
are allowed to "reproduce" to build new solutions. The
result is automated feature extraction algorithms cus-
tomized to the dataset at hand and the current feature
of interest. A graphical user interface is used to pro-
vide training data, allowing map-makers without pro-
gramming experience the ability to generate new fea-
ture extraction algorithms.

Mars Global Surveyor (MGS) [1] has been study-
ing Mars since 1997. The narrow angle dataset pro-
duced by the MOC [2] provides imagery with a spatial
resolution of approximately 3 meters/pixel in a broad
visible/near-infrared spectral range (0.50 — 0.90 um).
Since its arrival, MOC has taken over 112,000 images,
which have been used to study various planetary proc-
esses. Craters were selected as our feature of interest
because they are a easily recognizable feature that can
be used to derive important information about a sur-
face [3-4].

GENIE: GENIE [5-8] uses techniques from ge-
netic algorithms (GA) [9-11] and genetic programming
(GP) [12] to construct spatio-spectral feature extraction
algorithms for multi-spectral remotely sensed imagery.
Both the algorithm structure and the parameters of the
individual image processing steps are learned by the
system. GENIE has been described at length else-
where [5-8], so we will only present a brief description
here. In particular, the present work explores applying
GENIE to panchromatic imagery [13-14].

GENIE begins by randomly generating a popula-
tion of candidate image-processing algorithms from a
collection of spectral and textural image processing
operators, including local neighborhood statistics, tex-
ture measures, spectral band-math operations (e.g. ra-
tios of bands), and gray-scale morphological filters
with various shapes of structuring elements. Each can-
didate algorithm consists of a number of these image-
processing operators, which together generate a vector
of processed images in an intermediate, non-linear

feature space. These are combined using a Fisher lin-
ear discriminant to produce a single gray-scale result
image in which bright pixels indicate the presence of
the feature of interest. This gray-scale result is con-
verted to a Boolean classification using an optimal
threshold [15]. The parameters of the Fisher discrimi-
nant and threshold are based on training data provided
by the human user via GENIE’s graphical interface.

Our fitness metric for evaluating candidate image-
processing algorithms measures the total error rate
(false positives and false negatives) calculated from the
training data. After a fitness value has been assigned to
every candidate algorithm less fit members of the
population are discarded. A new population is gener-
ated by allowing the most fit members of the old
population to reproduce with modification via the
evolutionary operators of mutation and crossover. To
ensure a monotonic increase in fitness the most fit in-
dividual in the current population is kept without
modification (principle of elitism). This process of
fitness evaluation and reproduction with modification
is iterated until the population converges, or some de-
sired level of classification performance is attained, or
some user-specified limit on computational effort is
reached (e.g., a limit on the number of candidate algo-
rithms evaluated). This boolean threshold on the best
image processing algorithm returned by GENIE may
be adjusted by the user to re-adjust the emphasis of
detection rate (true positives) over false alarms and
missed detections.

The genetic algorithm used by GENIE is imple-
mented in object-oriented Perl. This language provides
a convenient environment for the string manipulations
required by the evolutionary operations, and for ac-
cessing the underlying operating system. Evaluation of
the candidate image-processing algorithms is the com-
putationally intensive part of the evolutionary process.
GENIE’s genetic algorithm writes code implementing
candidate algorithms in the IDL image analysis lan-
guage (IDL is a product of Research Systems, Inc.),
and sends them to an IDL session for evaluation. IDL
does not provide all the image processing operators we
need, so we have implemented additional operators in
a library of C code that can be called from within the
IDL environment. Individual image processing steps
correspond to primitive image operators, which are
coded as IDL procedures. A candidate algorithm is a
sequence of calls to primitive operators, and is imple-
mented as a sequence of lines of code in an IDL batch
executable. Fitness evaluation is an inherently paral-
lelizable process, and GENIE is able to exploit net-
works of workstations to speed up its evolution of al-
gorithms. Our graphical interface for supplying train-
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ing data and examining results (called ‘Aladdin’) is
written in Java. GENIE was developed on and for
Linux/Intel platforms, and has since been ported to
Sun’s Solaris operating system.

Results: We selected a training image, MOC im-
age MO0803054 [16], near Louros Valles (8.5S,
82.0W), to present a reasonably homogeneous terrain
marked by a number of bowl shaped craters. GENIE
was trained on the first 930 rows of pixels in the image
(the image is 830 pixels wide), based on a manual
analysis (Fig. 1) in which some of the bowl shaped
craters and some of the non-crater surface features are
marked. The next 970 rows of this scene were also
analyzed, to serve as a test scene (Fig. 2).

GENIE’s genetic algorithm is a stochastic learning
process, so individual results are likely to be highly
variable in structure. GENIE was run 6 times, each
time with a new population of 30 algorithms per gen-
eration, each run lasting for 50 generations. Running
on standard Intel/Linux workstations, each run re-
quired 1 hour of wall-clock time. The best individual
crater finding algorithm achieved a detection rate of
99% and a false alarm rate of 3%. On the test data, the
performance of this algorithm dropped slightly.

The results of the individual runs were combined
using three different voting schemes (Table 1) [17].
Classifier “Vote 1” uses a majority vote with contribu-
tions from all 6 classifiers. As expected, the false alarm
rate reported by the voting set is substantially lower
than the FAR reported by individual algorithms. This
result raises the question, is the voting dominated by
good individual algorithms? Classifier “Vote 2” is a
majority vote with all classifiers except the strongest
individual algorithm. Classifier “Vote 3” shows a
“unanimous” voting decision rule for all 6 classifiers.
For applications requiring a low FAR, this is a better
classifier than individual results.

Future Work: This research presently focuses on
Mars cratering as a testbed, but has obvious broader
applications to other questions of planetary science,
including analysis of cratering rates on satellites of
Jupiter and Saturn, analysis of other landforms such as
fractures in Europa’s lithosphere, detection of changes
over time on active planets such as lo, and location of
landforms such as dune fields and mineral outcrops.

Training Scene Test Scene
Class. D.R. F.AR. | D.R. F.AR.
Best ind. 98.94 3.00 94.76 2.74
Vote 1 97.31 1.24 94.33 2.34
Vote 2 97.48 2.97 94.77 7.59
Vote 3 84.83 0.15 84.38 0.52

Table 1. Results of best individual algorithm and vot-
ing on training and test data. D.R. is percent detection
rate, and F.A.R. is percent false alarm rate.
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Figure 1. MOC Image M0803054: Training Scene,
User-generated Training Data, result of first majority
vote.

Figure 2. MOC Image MO0803054: Test Scene 1, result
of first majority vote.

Conclusion: This study investigated the evolution
of a voting set of crater finding algorithms for applica-
tion to the Mars Orbiter Camera narrow angle dataset.
We described the results on training and test images.
The algorithms are successful at detecting craters
within the images, and generalize well to an image that
they have not seen before. We find these results to be
encouraging for the application of GENIE to the MOC
panchromatic dataset.
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